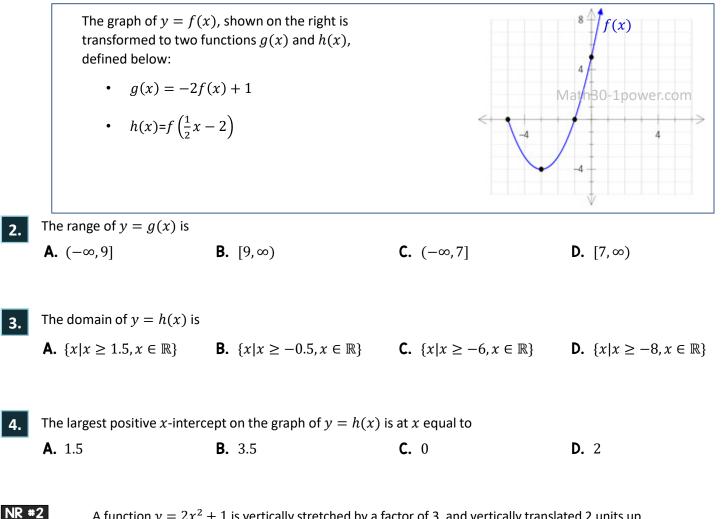
Transformations

MATH 30-1 PRACTICE EXAM

PART 1 - Machine Scored

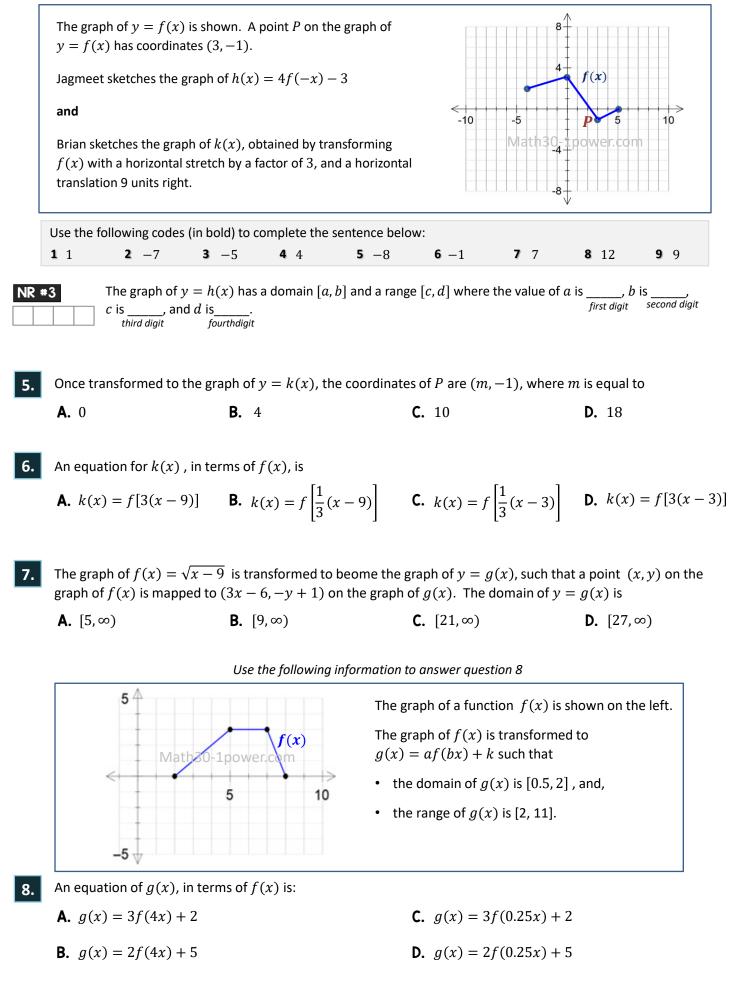
Answers are on the back page

Visit us online for complete Math 30-1 learning options


Math30-1Power.com RTD LEARNING

A function f(x) is reflected about the line x = 0, and is horizontally translated 3 units to the left. The equation of the transformed function, in terms of f, is:

A. y = -f(x+3) **B.** y = -f(x-3) **C.** y = f(-x+3) **D.** y = f(-x-3)


NR #IA rational function $f(x) = \sqrt{x+3} - 1$ is transformed into the graph $g(x) = f(x+2) + k$.The graph of $y = g(x)$ will have a domain of $x \ge _$ and a range $y \ge _$ <i>first digitfirst digit</i>								
Use the follo	owing cod	les (in bold) to	o complete the	sentence at	oove:			
1 1	2 k	3 -1	4 $k - 1$	5 5	6 -2	7 –3	8 $-1-k$	9 -5

Use the following information to answer questions 2, 3, and 4.

A function $y = 2x^2 + 1$ is vertically stretched by a factor of 3, and vertically translated 2 units up.

The resulting equation has the form $y = ax^2 + b$, where $a = ___$ and $b = _$ first digit second digit

The graph of $f(x) = 2x^2 - 3x + 5$ is vertically reflected about the line y = 0 and horizontally reflected about the line x = 0 to become y = g(x). An equation for the transformed function is

A.
$$g(x) = -2x^2 - 3x - 5$$

B. $g(x) = 2x^2 - 3x - 5$
C. $g(x) = -2x^2 - 3x + 5$
D. $g(x) = 2x^2 - 3x + 5$

Use the following information to answer NR #4

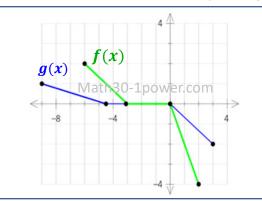
The graph of y = f(x), shown on the right is transformed to two functions g(x) and h(x), defined below:

•
$$g(x) = \frac{3}{2}f[-(x+2)] + 2$$

•
$$h(x) = f^{-1}(x)$$

The domain and range of each of the new functions are found in the table below.

Reference Number	Possible Domain
1	$x \leq 0, x \in \mathbb{R}$
2	$x \ge 0, x \in \mathbb{R}$
3	$x \leq 4, x \in \mathbb{R}$
4	$x \ge 4, x \in \mathbb{R}$
5	$x \ge -4, x \in \mathbb{R}$

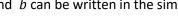

	$5 \bigwedge f(x)$	
<	Math30-1power.com	+>
-5	-5 17	5
e Number	Possible Range	

Reference Number	Possible Range
6	$y \geq -8, y \in \mathbb{R}$
7	$y \ge -4, y \in \mathbb{R}$
8	$y \ge -2, y \in \mathbb{R}$
9	$y \ge -2/3, y \in \mathbb{R}$

NR #4

9.

The domain and range of g(x) are numbered, respectively _____ and _ first digit second digit The domain and range of h(x) are numbered, respectively _____ and _ third digit fourth digit

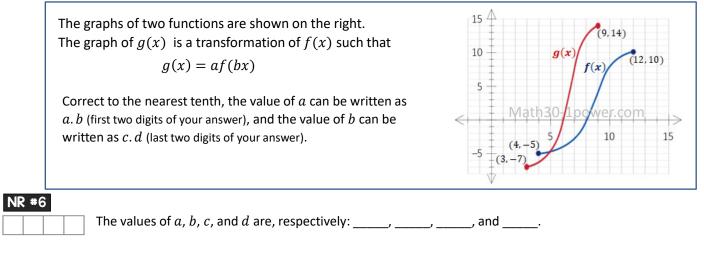

Use the following information to answer question NR #5

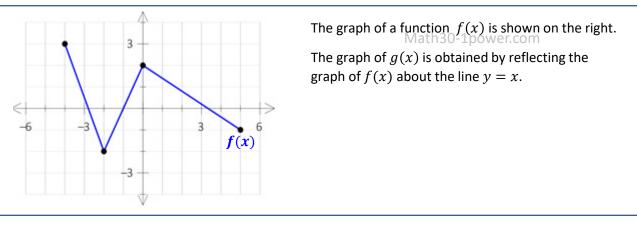
The graphs of the functions f(x) and g(x) are shown on the right.

The graph of g(x) is obtained by vertically and horizontally stretching the graph of f(x), such that

$$g(x) = af(bx)$$

Where *a* can be written in the simplified form $\frac{m}{n}$ And *b* can be written in the simplified form $\frac{p}{q}$




NR #5

The values of m, n, p and q are, respectively _ , and _ / _ first digit second digit third digit fourth digit

The graph of $f(x) = 2x^2 + 3x - 5$ is transformed to y = g(x) by applying a vertical reflection 10. about the line y = 0 and horizontally translating 1 unit left. The simplified equation of g(x) is

A.
$$g(x) = -2x^2 + 7x - 10$$

B. $g(x) = -2x^2 - 7x$
C. $g(x) = -2x^2 - x - 4$
D. $g(x) = -2x^2 + x + 6$

Use the following information to answer NR #7

Complete the statements below.

When the graph of y = f(x) is reflected about the line y = x there will be _______ invariant points. The number of y-intercepts on the graph of y = g(x) is _______. The largest x-coordinate on the graph of y = g(x) will be _____. third digit

Use the following information to answer questions 11 and 12

A function g(x) is defined as the inverse of $f(x) = \sqrt{x+4} - 1$.

11.

An equation for y = g(x) is:

A.
$$g(x) = (x + 1)^2 + 4$$

B. $g(x) = (x + 1)^2 - 4$
C. $g(x) = (x - 1)^2 + 4$
D. $g(x) = (x - 1)^2 - 4$

12. The domain of y = g(x) and its *y*-intercept are, respectively

A. $[-1,\infty)$, y = -3C. $(-\infty,\infty)$, y = -3B. $[-1,\infty)$, y = 2D. $(-\infty,\infty)$, y = 2

PART 2 - Written Response

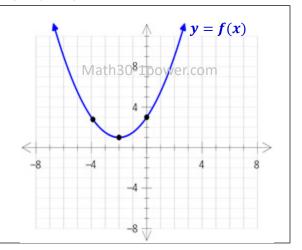
Use the following information to answer the first part of WR 1

The graph of f(x), shown on the right, has an equation which can be written in the form:

$$f(x) = a(x-h)^2 + k$$

where *h* and *k* are the coordinates of the vertex. The graph of f(x) passes through the points (-4, 3), (-2, 1) and (0, 3).

The graph of f(x) has the following transformations applied in determining a new function, g(x).


- Vertical stretch about the *x*-axis by a factor of 3
- Horizontal translation 4 units right

WR Question 1

- (a) On the same grid above, **sketch** the graph of y = g(x), indicated all revevant details including the transformations of the indicated points.
- (b) Algebraically determine the equation of both y = f(x) and y = g(x), in the form $f(x) = a(x h)^2 + k$ and $g(x) = a(x h)^2 + k$

(c) Explain how a reflection can affect the graph of f(x) equivalently to horizontally tranlating 4 units right. Justify your answer. Note: This is a *bonus part*, on the diploma exam each WR question has exactly two parts!

(d) A function h(x) is obtained by reflecting y = f(x) about the line y = x. Sketch the graph of y = h(x) and determine an equation. Note: This is ANOTHER *bonus part*, for your enjoyment!

The table below represents three separate sets of transformations. In each case, and original function f(x) has at least one specific transformations applied, such that a resulting function g(x) is obtained.

Three portions of the table, numbered **0**, **2**, and **S** are covered up as shown below.

Math30-1power.com

-	First transformation	Second transformation	Third transformation
Original Function	$f(x) = 2x^2 + 4x + 8$	f(x) = x-4 + 2	€
Mapping Rule	$(x,y) \to (x,\frac{3}{4}y - 6)$	0	$(x,y) \rightarrow (2x,y)$
Transformed Function	0	g(x) = - x-1 + 2	$g(x) = \sqrt{3(x-4)}$

WR Question 2

(a) **Determine** the contents of each of the three covered portions in the above table.

Use the following information to answer the second part of WR 1

A column is added to the table to describe fourth transformation in which a function

f(x) = 2(x+3)(x-1)(x-2) is transformed to $g(x) = \frac{3}{4}f(-x)$.

(b) Use an algebraic process to determine any x or y-intercepts of y = g(x), and state the range of y = g(x). Justify your answers.

Answers For full, worked-out solutions (as well as other practice materials) visit us online

Part 1 – Machine Scored								Aath30-1Power.com
1. D NR 1 94 2. A	3. C	4. D NR 2	65 NR 3 342	9 5. D	6. <mark>B</mark>	7. C	8. A	9. A
NR 4 1758 NR 5 1223	10. <mark>B</mark>	NR 6 1408	NR 7 233	11. B	12. A			

Part 2 – Written Response

1. (a) Graph of g(x) goes through (0, 9), (2, 3), and (4, 9) (b) Eqns: $f(x) = \frac{1}{2}(x+2)^2 + 1$ $g(x) = \frac{3}{2}(x-2)^2 + 3$ (c) Show that replacing "x" with "-x" in f(x) will also lead to same equation as replacing "x" with "x + 4" (d) Graph of h(x) goes through (3, -4), (1, -2), and (3, -4) Equation: $h(x) = \pm \sqrt{2(x-1)} - 2$

2. (a) **1** $g(x) = \frac{3}{2}x^2 + 3x$ **2** mapping rule is $(x, y) \to (x - 3, -y + 4)$ **3** $f(x) = \sqrt{6(x - 2)}$

(b) x-ints of g(x): -2, -1, and 3 y-int of g(x): 36 RANGE of $g(x): \{y \in \mathbb{R}\}$